Characterization of the cilia and ciliary membrane proteins of wild- type Paramecium tetraurelia and a pawn mutant

نویسندگان

  • S J Merkel
  • E S Kaneshiro
  • E I Gruenstein
چکیده

Cilia and ciliary membranes were isolated from axenically grown, wild-type Paramecium tetraurelia strain 51s and from the extreme pawn mutant strain, d495, derived from this parental strain. Over 60 protein bands having molecular weights of 15 to greater than 300 kdaltons were detected by Coomassie Blue staining of whole cilia proteins separated by one-dimensional SDS polyacrylamide gel electrophoresis. About 30 of these protein bands were visible in Coomassie Blue-stained membrane separations. About 60 bands were detected by silver staining of one-dimensional gels of membrane proteins. Differences between Coomassie Blue-stained separations of wild-type and pawn mutant strain d495 membrane proteins were seen in the quantity of a band present at 43 kdaltons. Radioiodination of cell surface proteins labeled approximately 15 protein bands in both wild-type and mutant cilia. The major axonemal proteins were unlabeled. Six membrane glycoproteins were identified by staining one-dimensional separations with iodinated concanavalin A and lentil lectin, two lectins that specifically bind both glucose and mannose residues. Two major neutral sugar species present in an acid hydrolysate of the cilia preparation were tentatively identified as glucose and mannose by gas chromatography of the alditol acetate derivatives.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-gated calcium channels of Paramecium cilia.

Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca2+ entering the cilium through voltage-gated Ca2+ (CaV) channels that are found exclusively in the cilia. As ciliary Ca2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the CaV channels causes cells to make a tu...

متن کامل

Ciliary adenosinetriphosphatase from a slow swimming mutant of Paramecium caudatum.

The slow swimming mutant (strain 11C 104), isolated from Paramecium caudatum, which swims at a speed about 70% of the wild type, is not different from the wild type (strain Kyky-1) in cell shape, density of cilia over the cell surface, and length of cilia. Cross-sectioned structures of the somatic cilia also do not give any difference between the mutant and the wild type. ATPase activities of c...

متن کامل

The cloning by complementation of the pawn-A gene in Paramecium.

The genetic dissection of a simple avoidance reaction behavior in Paramecium tetraurelia has shown that ion channels are a critical molecular element in signal transduction. Pawn mutants, for example, were originally selected for their inability to swim backward, a trait that has since been shown to result from the loss of a voltage-dependent calcium current. The several genes defined by this p...

متن کامل

Ca-induced K+-outward current in Paramecium tetraurelia.

Late K-outward currents upon membrane depolarization were recorded in Paramecium tetraurelia under a voltage clamp. A Ca-induced K-outward component is demonstrated by subtracting the value of the outward current in a pawn A mutant lacking functional Ca-channels (pwA500). The Ca-induced K-outward current activates slowly, reaching a peak after 100 to 1000 ms. The current then remains steady or ...

متن کامل

Membrane currents of pawn mutants of the pwA group in Paramecium tetraurelia.

Membrane currents were recorded from the wild type and two pawn mutants of the pwA complementation group in Paramecium tetraurelia under a voltage clamp. Most currents are not changed by the mutations. Transient inward currents of a leaky mutant, pwA132, upon step depolarizations are less than those in the wild type. The inward transient is completely lacking in a non-leaky mutant, pwA500. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 89  شماره 

صفحات  -

تاریخ انتشار 1981